GDumb: A Simple Approach that Questions Our Progress in Continual Learning

Ameya Prabhu¹ Philip Torr¹ Puneet Dokania^{1,2} University of Oxford¹& Five AI Ltd.²

Input: Each dataset $\mathcal{D} = \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^n$ of *n* samples Goal: Learn $f_{\theta} : \mathbf{x} \to \mathbf{y}$ $\min_{\theta} \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \mathcal{D}} L(f_{\theta}(\mathbf{x}), \mathbf{y})$

(Standard) Supervised Classification

What happens when it's given a new dataset $\bar{\mathcal{D}}$ (having samples with both old and new labels)?

$$\min_{\theta} \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \mathcal{D} \cup \overline{\mathcal{D}}} L(f_{\theta}(\mathbf{x}), \mathbf{y})$$

Combine datasets and repeat the process!

What is Continual Learning?

(Standard) Supervised Classification

Input: Each dataset $\mathcal{D} = {\mathbf{x}_i, \mathbf{y}_i}_{i=1}^n$ of *n* samples Goal: Learn $f_{\theta} : \mathbf{x} \to \mathbf{y}$

$$\min_{\theta} \mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \bigcup_{i=1}^{k} \mathcal{D}_{i}} L(f_{\theta}(\mathbf{x}), \mathbf{y})$$

It's the same process, repeated k times

Objectives

- Make learning scalable over time
- Mechanisms to add, consolidate & query knowledge (K)

Continual Classification

Input: A stream of labeled data at each timestep *t*

Goal: Learn $f_{\theta} : \mathbf{x} \to \mathbf{y}$

Open-set: The data stream can provide any sample, with any new label, at any time – including at test time Use-case: Partial information about the classes, consolidate knowledge on-the-fly

Trends in Continual Learning

- Any class (old or new) can come at any time
- Cannot revisit streamed samples again

Disjoint Subsets: Clean partitioning into clusters of classes called a task, typically of equal sizes

Trends in Continual Learning

Offline: Clean partitioning into clusters of classes & reduce all timesteps in the same cluster to one

Trends in Continual Learning

Classifying Literature

Form.	orm. CI-CL Online Disjoint			Papers	Regularize	Memory	Distill	Param iso
A	\checkmark	\checkmark \checkmark MIR[11], GMED[12]		MIR[11], GMED[12]	×	\checkmark	×	×
				LwM[13], DMC[14]	×	×	\checkmark	×
				SDC [15]	\checkmark	×	×	×
				BiC[16], iCARL[4]				
				UCIR[17], EEIL[18]	~		./	~
В	\checkmark	×	\checkmark	IL2M[19], WA[20]	~	v	v	~
				PODNet[21], MCIL[22]				
				RPS-Net[23], iTAML[24]	×	\checkmark	\checkmark	\checkmark
				CGATE[25]	×	\checkmark	×	\checkmark
				RWALK[8]	\checkmark	\checkmark	×	×
				PNN[26], DEN[27]	×	×	×	\checkmark
				DGR [28]	×	\checkmark	×	×
				LwF[3]	×	×	\checkmark	×
				P&C[29]	×	×	\checkmark	\checkmark
\mathbf{C}	×	\times	\checkmark	APD[30]	\checkmark	×	×	\checkmark
				VCL[31]	\checkmark	\checkmark	×	×
				MAS[32], IMM[33]				
				SI[5], Online-EWC[29]	\checkmark	×	×	×
				EWC[6]				
D	~	(/	TinyER[34], HAL[35]	×	\checkmark	×	×
D	X	v	v	GEM[7], AGEM[36]	\checkmark	\checkmark	×	×
Е	\checkmark	\checkmark	×	GSS[37]	×	\checkmark	×	×

(Left) Assumptions in formulation

- Disjoint set assumed?
- Task or class-incremental?
- Online or offline?

(Right) Strategy to consolidate knowledge

- Regularization?
- Replay?
- Distillation?
- Parameter-isolation?

Classifying Literature

Form.	CI-CL	Online	Disjoin	t Papers	Regularize	Memory	Distill	Param iso	
A	\checkmark	\checkmark	\checkmark	MIR[11], GMED[12]	×	\checkmark	×	×	
				LwM[13], DMC[14]	×	×	\checkmark	×	
				SDC [15]	\checkmark	×	×	×	
				BiC[16], iCARL[4]					
				UCIR[17], EEIL[18]		((
В	\checkmark	×	\checkmark	IL2M[19], WA[20]	X	V	V	X	
				PODNet[21], MCIL[22]					
				RPS-Net ^[23] , iTAML ^[24]	×	\checkmark	\checkmark	\checkmark	
				CGATE[25]	×	\checkmark	×	\checkmark	
				RWALK[8]	\checkmark	\checkmark	×	×	
				PNN[26], DEN[27]	×	×	×	\checkmark	1
				DGR [28]	×	\checkmark	×	×	
				LwF[3]	×	×	\checkmark	×	
				P&C[29]	×	×	\checkmark	\checkmark	
\mathbf{C}	×	\times	\checkmark	APD[30]	\checkmark	×	×	\checkmark	
				VCL[31]	\checkmark	\checkmark	×	×	
				MAS[32], IMM[33]					
				SI[5], Online-EWC[29]	\checkmark	×	×	×	
				EWC[6]					
D		/	/	TinyER[34], HAL[35]	×	\checkmark	×	×	
D	×	\checkmark	\checkmark	GEM[7], AGEM[36]	\checkmark	\checkmark	×	×	
Е	\checkmark	\checkmark	×	GSS[37]	×	\checkmark	×	×	

For eg: RWALK belongs to this class

Offline, class-incremental, disjoint

RWALK aims to mitigate forgetting using regularization with help of memory

Classifying Literature

Form.	orm. CI-CL Online Disjoint		Disjoint	t Papers	Regularize	e Memory	v Distill l	Param iso
А	\checkmark	\checkmark	\checkmark	MIR[11], GMED[12]	×	\checkmark	×	×
				LwM[13], DMC[14]	×	×	\checkmark	×
				SDC [15]	\checkmark	×	×	×
				BiC[16], iCARL[4]				
				UCIR[17], EEIL[18]		/	/	
В	\checkmark	×	\checkmark	IL2M[19], WA[20]	X	\checkmark	\checkmark	×
				PODNet[21], MCIL[22]				
				RPS-Net[23], iTAML[24]	×	\checkmark	\checkmark	\checkmark
				CGATE[25]	×	\checkmark	×	\checkmark
				RWALK[8]	\checkmark	\checkmark	×	×
				PNN[26], DEN[27]	×	×	×	\checkmark
				DGR [28]	×	\checkmark	×	×
				LwF[3]	×	×	\checkmark	×
				P&C[29]	×	×	\checkmark	\checkmark
\mathbf{C}	×	×	\checkmark	APD[30]	\checkmark	×	×	\checkmark
				VCL[31]	\checkmark	\checkmark	×	×
				MAS[32], IMM[33]				
				SI[5], Online-EWC[29]	\checkmark	×	×	×
				EWC[6]				
D	~		/	TinyER[34], HAL[35]	×	\checkmark	×	×
D	Х	V	V	GEM[7], AGEM[36]	\checkmark	\checkmark	×	×
Е	\checkmark	\checkmark	×	GSS[37]	×	\checkmark	×	×

Typical CL Algorithms

- Evaluated on one specific formulation
 - Formulation oversimplified & restricted
 - Algorithms often fail to generalize
 - Are the scenarios practical?
- Very sensitive to hyperparameters
 - Can't tweak when deployed
- Very computationally intensive
 - Why not train a supervised model

directly?

GDumb: A Simple, Unifying Approach

GDumb

Greedy Balancing Sampler

- Greedily stores samples in memory
- Balances #samples across classes

Dumb Learner

- When asked, trains a model from scratch only using current memory samples
- Combines predictions with oracle taskinformation via a binary mask at inference

Greedy Sampler & Dumb Learner

 GDumb has no explicit model designed for: *Nothing* to reduce forgetting *Nothing* to improve intransigence

- Same, simple learning
 No task-incremental training
 No offline training
 No disjoint sampling
- No hyperparameter tuning!

Experimental Setup

Form	. Designed in	n Model (Dataset)	memory (k)	Metric	CI-CL	Online	Disjoint	
A1	MIR	MLP-400 (MNIST); ResNet18 (CIFAR10)	300, 500; 200, 500, 1000	Acc. (at end)				Evaluate on 10 popular, diverse formulations
A2	GMED	MLP-400 (MNIST); ResNet18 (CIFAR10)	500; 500	Acc. (at end)	\checkmark	\checkmark	\checkmark	Same network & memory
A3	ARM	MLP-400 (MNIST); ResNet18 (CIFAR10)	500; 1000	Acc. (at end)				No hyperparameter tuning
B1	Hsu etal. RPS-Net	MLP-400 (MNIST);	4400	Acc. (at end)				• SGD
B2	iCARL	ResNet32 (CIFAR100)	2000	Acc. (avg in t)	\checkmark	×	\checkmark	• lr: 5e-2 → 5e-4
B3	PODNet	ResNet32 (CIFAR100); ResNet18 (ImageNet100)	1000-2000 (+20) x50	Acc. (avg in t)				SGDR schedular
C1	Hsu etal.	MLP-400 (MNIST)	4400	Acc. (at end)		×		• Decay: 1e-6
C2	CSDF	Many (TinyImageNet)	$4500,\!9000$	Acc. (at end)	~	~	v	Batch cizo: 16
D	AGEM	ResNet-18-S (CIFAR10)	0-1105 (+65) x17	Acc. (at end)	×	\checkmark	\checkmark	 Balch Size: 10 No formulation restrictions used for training
Ε	GSS	MLP-100 (MNIST); ResNet-18 (CIFAR10)	$\begin{array}{c} 300;\\ 500 \end{array}$	Acc. (at end)	\checkmark	\checkmark	×	

Minimal Assumptions: Comparisons

• GSS (Aljundi etal., NeurIPS19) Method MNIST CIFAR10 Reservoir 69.1 **GSS-Clust** 25.0 -FSS-Clust 26.0 29.6 GSS-IQP 76.5 GSS-Greedy 29.6 78.0 GDumb 88.9 45.8 (+Increase) (+10.9) (+16.2)

Beats best competitor by 10-15% points

MIR (Aljundi etal., NeurIPS19)

MNIST (500)	(k)	(200)	(500)	(1000)					
755+13	GEM	16.8 ± 1.1	17.1 ± 1.0	17.5 ± 1.6					
816+09	iCARL	28.6 ± 1.2	33.7 ± 1.6	32.4 ± 2.1					
01.0 ± 0.5	ER	27.5 ± 1.2	33.1 ± 1.7	41.3 ± 1.9					
02.1 ± 2.4	ER-MIR	29.8 ± 1.1	40.0 ± 1.1	47.6 ± 1.1					
00.5 ± 1.0	ER5	-	-	42.4 ± 1.1					
87.6±0.7	ER-MIR5	-	-	49.3 ± 0.1					
91.9 ± 0.5	GDumb	35.0 + 0.6	45.8 + 0.9	61.3 + 1.7					
(+4.3)	(+Increase)	(+5.2)	(+5.8)	(+11.0)					

Beats previous best which uses disjoint set assumption by 4-11% points (lower margin)

+Disjoint Sets Assumption

• GME	• GMED (Jin etal., Arxiv, July20)								
Method (<i>k</i>)	MNIST (500)	CIFAR10 (500)							
Fine tuning	18.8 ± 0.6	18.5 ± 0.2							
AGEM	29.0±5.3	18.5±0.6							
BGD	13.5 ± 5.1	18.2±0.5							
GEM	87.2±1.3	20.1 ± 1.4							
GSS-Greedy	84.2 ± 2.6	28.0±1.3							
HAL	77.9±4.2	32.1±1.5							
ER	81.0 ± 2.3	33.3±1.5							
MIR	84.9±1.7	34.5 ± 2.0							
GMED (ER)	82.7 ± 2.1	35.0±1.5							
GMED (MIR)	87.9±1.1	35.5±1.9							
GDumb	91.9±0.5	45.8±0.9							
(+Increase)	(+4.0)	(+10.3)							

Beats parallel work which uses disjoint assumption by 4-10% points

+Disjoint, Offline Sets Assumption

Method	MNIST	SVHN				
MAS	19.5 ± 0.3	17.3				
SI	19.7 ± 0.1	17.3				
EWC	19.8 ± 0.1	18.2				
Online-EWC	19.8 ± 0.04	18.5				
LwF	24.2 ± 0.3	-				
DGR	91.2±0.3	-				
DGR+Distill	91.8±0.3	-				
GEM	92.2 ± 0.1	75.6				
RtF	92.6±0.2	-				
RPS-Net	96.2	88.9				
OvA-INN	96.4	-				
iTAML	97.9	94.0				
GDumb	97.8±0.2	93.4 ± 0.4				

• Hsu etal., NeurIPS18 CL-W)

Beats all competitors inspite disjoint & offline assumptions, matching iTAML performance

+Disjoint, Offline Sets Assumption

Offline Samples

	iCARL (Rebuffi etal., CVPR17)	PODNet (Douillard etal., ECCV20
Method/CIFAR1	00 10 tasks, 10 cls	50 tasks, 1 cls
DMC++	56.8±0.9	-
icarl	58.8±1.9	44.2 ± 1.0
WA	62.6	-
EEIL	63.4 ± 1.6	-
BiC	63.8	47.1 ± 1.5
UCIR (CNN)	-	49.3 ± 0.3
PODNet (CNN)	-	58.0±0.5
GDumb	45.2 ± 1.7	58.4 ± 0.8
(Diff w) iCARL, B	iC -13.6 , -18.6	+14.2, +11.3
	×	_

When tasks were 10, we were ~15-20% lowerWhen tasks increase to 50, we perform 10-15% higherIllustrates: BiC/iCARL don't work beyond formulations having less timesteps (tasks)

Questioning Progress in Continual Learning Rive Al

Method	М	NIST		Method	Paramet	ers Regular	ization Accurac	y					Mathad		INIST	CI	FA P 10
k	(300)	(500)			No stor	ed samples				Method	MNIST	CIFAR-10	Method	Memory	Accuracy	Memory	Accuracy
]	MLP-100			mean-IMN	1 [33] 3.5M	none	32.42	Method	CIFAR100	<u>k</u>	(500)	(500)		Memory	Accuracy	Memory	Accuracy
FSS-Clust [37]	75.8 ± 1.7	83.4 ± 2	2.6	mode-IMM	4 [<mark>33</mark>] 9.0M	dropout	42.41	(k)	(1105)	Fine tuning	18.8 ± 0.6	18.5 ± 0.2	Finetune	0	18.8 ± 0.5	0	15.0 ± 3.1
GSS-Clust [37]	75.7 ± 2.2	83.9 ± 1	1.6	SI[5]	3.5M/9.0	M L2/drop	pout 43.74	RWalk [8]	40.9 ± 3.9	AGEM [36]	29.0 ± 5.3	18.5 ± 0.6	GEN [28]	4.58	79.3 ± 0.6	34.5	15.3 ± 0.5
GSS-IQP [37]	75.9 ± 2.5	84.1 ± 2	2.4	HAT $[51]$	3.5M/9.0	ML2	44.19	EWC [6]	42.4 ± 3.0	BGD [48]	13.5 ± 5.1	18.2 ± 0.5	GEN-MIR $[11]$	4.31	82.1 ± 0.3	38.0	15.3 ± 1.2
GSS-Greedy [37]	82.6 ± 2.9	84.8 ± 1	1.8	EWC $[6]$	613K	none	45.13	Base	42.9 ± 2.0	GEM [7]	87.2 ± 1.3	20.1 ± 1.4	LwF [3]	1.91	33.3 ± 2.5	4.38	19.2 ± 0.3
GDumb (Ours)	$\textbf{88.9}\pm\textbf{0.0}$	$390.0\pm$	0.4	LwF [3]	9.0M	L2	48.11	MAS [32]	44.2 ± 2.3	GSS-Greedy [37]	84.2 ± 2.6	28.0 ± 1.3	ADI [47]	1.91	55.4 ± 2.6	4.38	24.8 ± 0.9
]	MLP-400			EBLL $[52]$	9.0M	L2	48.17	SI [5]	47.1 ± 4.4	HAL $[35]$	77.9 ± 4.2	32.1 ± 1.5	ARM [41]	1.91	56.2 ± 3.5	4.38	26.4 ± 1.2
GEN [43]	-	75.5 ± 1	1.3	MAS [32]	3.5M/9.0	M none	48.98	iCARL [4]	50.1	ER [44]	81.0 ± 2.3	33.3 ± 1.5	ER [44]	0.39	83.2 ± 1.9	3.07	41.3 ± 1.9
GEN-MIR [11]	-	81.6 ± 0).9	PackNet [5	[53] 613K/3.5	5M L2/droj	pout 55.96	- S-GEM [36]	56.2	MIR [11]	84.9 ± 1.7	34.5 ± 2.0	ER-MIR [11]	0.39	85.6 ± 2.0	3.07	47.6 ± 1.1
ER [44]	-	82.1 ± 1	1.5		k:	=4500		– PNN [26]	59.2 ± 0.8	GMED (ER) $[12]$	82.7 ± 2.1	35.0 ± 1.5	iCarl [4] (5 iter)	-	-	3.07	32.4 ± 2.1
GEM [7]	-	86.3 ± 1	1.4	GEM [7]	613K/3.5	oM none/di	ropout 44.23	GEM [7]	61.2 ± 0.7	GMED (MIR) $[12]$	$] 87.9 \pm 1.1$	35.5 ± 1.9	GEM [7]	0.39	86.3 ± 0.1	3.07	17.5 ± 1.6
ER-MIR [11]	-	87.6 ± 0	0.7	GDumb	834K	cutmix	45.50	A-GEM [36	$] 63.1 \pm 1.2$	GDumb (Ours)	$\textbf{91.9} \pm \textbf{0.5}$	$\textbf{45.8} \pm \textbf{0.9}$	GDumb (ours)	0.39	$\textbf{91.9} \pm \textbf{0.5}$	3.07	61.3 ± 1.7
GDumb (Ours)	-	$\textbf{91.9}~\pm$	0.5	ICARL [4]	013K/3.3	-9000	48.00	— TinyER [34	$] 68.5 \pm 0.6$		(A2)				(A3)		
	2	NICE		GEM [7]	613K/3	5M_none/di	ropout 45.27	– GDumb	60.3 ± 0.8	<u> </u>							
Method	N	INIST 4400)		iCARL [4]	613K/3.5	5M dropout	49.94	(D)								
(k)	(4400)		GDumb	834K	cutmix	57.27										
GEM [7]	98.4	2 ± 0.10						Method	MNIS'	Γ CIFAR10	Possi	ble fail	ure mod	es.			
EWC [6]	98.6	4 ± 0.22	Metl	hod		CIFAR10			1 00.10		1 0001						
SI [5]	99.0	9 ± 0.15	k		(200)	(500)	(1000)	Reservoir [43	[69.12	-	• D		luation ($\infty \circ tr$	icc \	ว	
Online EWO	C [29] 99.1	2 ± 0.11	GEN	A [7]	16.8 ± 1.1	17.1 ± 1.0	17.5 ± 1.6	GSS-Clust [3	7] -	25.0	• De	au eva	luation (I	neu	ics,)	ŗ	
MAS [32]	99.2	2 ± 0.21	iCA	RL [4]	28.6 ± 1.2	33.7 ± 1.6	32.4 ± 2.1	FSS-Clust [3	7] -	26.0							
DGR [28]	99.5	0 ± 0.03	ER	[44]	27.5 ± 1.2	33.1 ± 1.7	41.3 ± 1.9	GSS-IQP $[37]$] 76.49	29.6	• To	o simr	olistic/res	strict	ive for	mula	ations?
LwF [3]	99.6	0 ± 0.03	ER-I	MIR [11]	29.8 ± 1.1	40.0 ± 1.1	47.6 ± 1.1	GSS-Greedy	[37] 77.96	29.6		0 01111					
DGR+Disti	il [28] 99.6	1 ± 0.02	ER5	[11] MID F [14]	-	-	42.4 ± 1.1	GDumb (Ou	rs) 88.9 3	45.8		•1 •				2	
RtF	99.6	6 ± 0.03	GDr	mh (Ourg)	-350 ± 0.64	- 58+09	49.3 ± 0.1 61 3 + 1 7		(E)		• He	eavily <mark>t</mark>	allored a	ppro	baches	<u>۲</u>	
GDumb	99.7	7 ± 0.03	GDt	uno (Ours)	(11)	0.0 ± 0.9	01.0 ± 1.7					-					
	(C1)				(A1)												

It's alarming that simple GDumb outperforms tailored algorithms on formulations they were designed for!

Summary: Our Contributions

A General CL Formulation

GDumb: A Simple, Unifying Approach

Quirks & Assumptions of Recent Formulations

Thank You!

Questions?